Регистрация пройдена успешно!
Пожалуйста, перейдите по ссылке из письма, отправленного на
США: 100 миллиардов на изучение мозга

Цель проекта, предпринятого для содействия разведывательному сообществу США — провести инженерный анализ мозга и определить алгоритмы, которые позволят компьютерам думать как человек

© Fotolia / Mopic Искусственный интеллект. Иллюстрация дизайнера Mopic
Искусственный интеллект. Иллюстрация дизайнера Mopic
Материалы ИноСМИ содержат оценки исключительно зарубежных СМИ и не отражают позицию редакции ИноСМИ
Читать inosmi.ru в
Целью большой исследовательской программы «Искусственный интеллект на основе нейронных сетей» является проведение инженерного анализа образца мозга величиной в один кубический миллиметр, изучение механизмов, с помощью которых мозг выполняет вычисления, и на основе полученных данных повысить производительность алгоритмов машинного обучения и искусственного интеллекта.

Тридцать лет назад правительство США запустило проект «Геном человека» — программу секвенирования и картирования всех генов человека как биологического вида, рассчитанную на 13 лет. Несмотря на то, что поначалу эта инициатива вызвала недоверие и даже протесты, она значительно преобразила генетику как область науки и сейчас считается одним из самых удачных научных проектов за всю историю.

Сейчас Агентство передовых исследований в сфере разведки (IARPA), выполняющее научные исследования для разведывательного сообщества США и созданное как аналог знаменитого Агентства по перспективным оборонным научно-исследовательским разработкам министерства обороны США (DARPA), выделило 100 миллионов долларов на аналогичный грандиозный проект. Целью большой исследовательской программы «Искусственный интеллект на основе нейронных сетей» (Machine Intelligence from Cortical Networks/MICrONS) является проведение инженерного анализа образца мозга величиной в один кубический миллиметр, изучение механизмов, с помощью которых мозг выполняет вычисления, и на основе полученных данных повысить производительность алгоритмов машинного обучения и искусственного интеллекта. Для реализации этого проекта IARPA привлекло три группы ученых, которыми руководят биолог и специалист по компьютерным наукам из Гарвардского университета Дэвид Кокс (David Cox), специалист по компьютерным наукам из Университета Карнеги-Меллон Тай Синг Ли (Tai Sing Lee) и специалист в области нейронаук из медицинского колледжа Бэйлор (BCM) Андреас Толиас (Andreas Tolias). Каждая из команд разработала свою пятилетнюю программу исследований.

«Это солидное вложение средств, поскольку мы считаем эту проблему крайне важной, и [это окажет] влияние, способное изменить работу разведывательного сообщества, а также в целом изменить мир», — говорит представитель IARPA Джейкоб Фогельштейн, курирующий программу MICrONS.

Цель большой исследовательской программы MICrONS, реализуемой в рамках запущенного по решению президента Обамы национального проекта США BRAIN Initiative (Brain Research Through Advancing Innovative Neurotechnologies/«Изучение мозга путем развития инновационных нейротехнологий») — добиться прорыва в области вычислительных систем, созданных на основе модели человеческого мозга. Сегодня многие технологии уже используют группу алгоритмов, называемых искусственной нейронной сетью, которые, судя по их названию, созданы на основе архитектуры (или, по крайней мере, того, что мы знаем об архитектуре) мозга. Благодаря значительному повышению производительности компьютера и доступности огромных массивов данных в интернете, Facebook может распознавать лица, Siri узнает голоса, автомобили могут ездить без водителя, а компьютер может побеждать человека в таких играх, как шахматы. Однако эти алгоритмы по-прежнему несовершенны, и в их основе лежат значительно упрощенные процессы анализа информации по шаблонам и образцам. Как правило, производительность искусственных нейронных сетей, созданных на основе моделей образца 1980-х годов, невысока в загроможденной среде, где объект, который компьютер пытается распознать, скрыт среди большого количества объектов, многие из которых частично перекрывают друг друга или идентифицируются неоднозначно. Кроме того, эти алгоритмы не обладают достаточной способностью обобщения. Например, если компьютеру показать в качестве образцов один или два изображения собаки, распознавать всех собак он не научится.

Что же касается людей, то они, похоже, справляются с такой задачей без труда. Мы можем увидеть друга в толпе, выделить знакомый голос в шумном месте и замечать звуковые или графические образы, на основе всего лишь одного или нескольких примеров, увиденных или услышанных раньше. Мы постоянно учимся обобщать, не нуждаясь ни в каких подсказках или инструкциях. Поэтому, чтобы выяснить, каких из этих моделей не хватает компьютеру, участники проекта MICrONS, занялись изучением мозга. «Это самый лучший ориентир», — считает Кокс.

И хотя нейронные сети содержат элементы архитектуры, обнаруженные в мозге, методы вычисления, которые ими используются, не являются непосредственной копией каких-либо алгоритмов, используемых для обработки информации нейронами. Другими словами, способы, с помощью которых современные алгоритмы представляют, преобразуют информацию и учатся на ее основе — это инженерные решения, принимаемые, главным образом, методом проб и ошибок. Они работают, но ученые на самом деле не знают, почему — во всяком случае, знают недостаточно, чтобы создать искусственную нейронную сеть. По-прежнему остается невыясненным, похожа ли такая нейронная обработка информации на соответствующие операции, происходящие в мозге человека, или нет. «Поэтому если мы проникнем на уровень глубже и получим из мозга информацию не только на уровне архитектуры, но и на уровне вычислений, мы сможем доработать эти алгоритмы и приблизить их к механизмам работы мозга», — говорит Фогельштейн.

Все три группы ученых попытаются составить полную схему сигналов между нейронами в кубическом миллиметре коры головного мозга лабораторной крысы. Может показаться, что одного кубического миллиметра — равного менее одной миллионной части объема мозга человека — слишком мало. Но на сегодняшний день ученые способны одновременно измерять деятельность либо лишь нескольких нейронов, либо миллионов нейронов, зафиксированных на комбинированных изображениях, полученных методом функционально магнитно-резонансной томографии. Сейчас участники программы MICrONS планируют записать деятельность и межнейрональные связи 100 тысяч нейронов в ходе опытов, во время которых лабораторная крыса будет воспринимать зрительные образы и выполнять задачи обучения — план весьма сложный, поскольку необходимо будет делать снимки с манометрической точностью и работать с проводами длиной всего несколько миллиметров. «Это все равно, что составлять карту США, измеряя каждый дюйм», — говорит Фогельштейн.

И все же, Фогельштейн настроен оптимистично, учитывая выделенные недавно средства на проведение полномасштабных исследований. «С запуском национального проекта BRAIN Initiative появилось множество новых онлайн инструментов и методик — как в плане разрешающей способности, так и по масштабам — позволяющих проводить детальные исследования мозга, необходимые для построения схем, — отмечает он. — Так что это уникальный историческим момент, когда у нас впервые за все время появились инструменты, методики и технически средства для построения принципиальной схемы, в которой будет учтен каждый нейрон и каждый синапс».

Каждая группа ученых собирается составлять «дорожную карту» мозга по-своему. Для измерения деятельности мозга крыс в процессе их обучения распознаванию предметов на экране компьютера группа, возглавляемая Коксом, планирует использовать метод так называемой двухфотонной микроскопии. Ученые собираются вводить крысам модифицированный флуоресцентный белок, чувствительный к кальцию. Когда нейрон зажигается, ионы кальция устремляются в клетку, из-за чего белок начинает светиться ярче — так что, используя лазерный сканирующий микроскоп, ученые смогут наблюдать, как зажигаются нейроны. «Это немного напоминает прослушивание мозга, — объясняет Кокс. — Так же как подслушивают телефонный звонок, чтобы быть в курсе событий, мы сможем прослушивать важные внутренние процессы, происходящие в мозге живого и выполняющего какие-то действия животного».

Затем образец мозга крысы объемом в кубический миллиметр отправят в Гарвардский университет биологу и нейроученому Джеффри Лихтману (Jeffrey Lichtman). В его лаборатории образец будет разрезан на невероятно тонкие слайсы, и эти срезы будут исследованы с помощью современного микроскопа с достаточным разрешением, позволяющим увидеть соединяющиеся друг с другом вытянутые и похожие на провода участки клеток мозга. Группа под руководством Толиаса будет использовать похожий метод, называющийся трехфотонная микроскопия. Тем самым ученые этой группы смогут исследовать не только поверхностные слои мозга крысы, изученные Коксом и его коллегами, но и проникнуть в более глубокие слои.

Что касается группы под руководством Ли, то для картографирования коннектома — нейрональных связей головного мозга — она собирается использовать более радикальный подход. Совместно с ученым-генетиком из медицинской школы Гарвардского университета Джорджем Черчем (George Church) они планируют использовать ДНК-штрихкодирование — то есть, будут маркировать каждый нейрон уникальной нуклеотидной последовательностью (штрихкодом) и химическим путем соединять штрихкоды через синапс для воссоздания схем. Хотя этот метод не позволяет получить такую же пространственную информацию, как при использовании микроскопии, Ли надеется, что этот метод будет более точным и обеспечит получение результатов в более короткий срок — но при условии, что он вообще сработает. До сих пор этот метод ни разу не удавалось применить успешно. «Если этот метод ДНК-штрихкодирования окажется эффективным, он кардинально изменит нейронауку и коннектомику», — считает Ли.

Но это только половина большой программы MICrONS. Затем ученым предстоит выяснить, каким образом всю эту информацию можен будет использовать применительно к алгоритмам в машинном обучении. На этот счет у них есть кое-какие соображения. Например, многие ученые считают, что мозг по природе байейсовский, то есть нейроны представляют сенсорную информацию в виде распределения вероятностей, рассчитывая наиболее вероятную интерпретацию события на основе предыдущего опыта. Эта гипотеза основана, прежде всего, на идее существования в головном мозге цепей обратной связи — согласно которой информация поступает не только вперед, и существует еще большее количество соединений, направляющих информацию в обратном направлении. Другими словами, исследователи гипотетически предполагают, что восприятие является не просто процессом передачи информации от какого-то условного входа до какого-то выхода. Скорее, существует некий конструктивный процесс, «анализ путем синтеза», в ходе которого мозг хранит и создает внутреннее представление об окружающем мире, формирует ожидание и прогноз, которые позволяют ему интерпретировать поступающие данные и планировать, каким образом эти данные использовать. «Мы сейчас очень подробно изучаем основополагающий принцип — характерные особенности процесса синтеза, — объясняет Кокс, — когда мы фантазируем, что могло бы произойти в мире, а потом сопоставляем с тем, что мы видим на самом деле, после чего мы используем это для формирования наших представлений».

Например, сетчатка глаза, которая реагирует на свет, генерируя электрические сигналы, передаваемые на зрительный нерв и затем поступающие в головной мозг, фактически представляет собой двухмерную структуру. Поэтому когда человек видит предмет, мозг, вероятно, использует такую вероятностную модель, чтобы сделать заключение о трехмерности окружающего мира с помощью света, попадающего на двухмерную поверхность сетчатки. Хотя, если это на самом деле так, то тогда мозг нашел гораздо более эффективные способ аппроксимации и обобщения переменных величин, чем это можем делать мы с помощью имеющегося у нас набора математических моделей. Ведь если вы наблюдаете картину со 100 объектами, представьте лишь то, сколько у этих объектов может быть параметров в прямом и обратном направлениях (только в двух из многих направлений). Одномоментно — 2100 возможных комбинаций. Получить ответ путем вычислений вряд ли возможно. А вот мозг легко проделывает это с бесконечным числом возможных направлений: с учетом различных расстояний, углов поворота и в разных условиях освещенности. «Что делает мозг — он раскручивает это многообразие [базовых координат] и позволяет легко отделить их друг от друга», — объясняет Толиас.

Каждая из трех групп привлекла к работе специалистов по компьютерным технологиям, которые воплотят эти теории в математические модели, а затем проверят их на данных, полученных путем инженерного анализа мозга. «Для каждого конкретного описания алгоритма — например, вероятностного алгоритма — существуют миллионы вариантов реализации, которые необходимо выбрать и просмотреть, чтобы превратить эту теорию в работающую программу, — рассказывает Фогельштейн. — Из этого миллиона (или около того) вариантов некоторые комбинации этих параметров и характеристик позволят написать хороший алгоритм, а на основе некоторых других комбинаций можно будет создать неэффективные или совсем непригодные алгоритмы. Путем „извлечения” настроек этих параметров из мозга — а не путем угадывания их с помощью программного обеспечения (как мы это делали до этого) — мы надеемся сократить поле поиска до небольшого числа вариантов реализации алгоритма, сопоставимых с работой мозга».

С помощью таких моделей внутреннего уровня участники проекта MICrONS планируют создать более автоматизированные машины — особенно когда идет речь об обучении машин определять объекты без предварительного ознакомления с тысячами примеров, в которых предметы обозначаются названиями. Фогельштейн хочет помочь разведке США, применив методику неконтролируемого обучения. «У нас может быть только одно изображение или только один пример хакерской атаки, которую нам необходимо предотвратить, или одна запись финансового кризиса или погодного явления, вызывающего проблемы. И при этом нам необходимо генерализовать эту информацию, обобщив ее в более широкий спектр ситуаций, в рамках которого может возникнуть такое же событие или признак, — рассказывает он. — И вот этого мы надеемся добиться: более эффективного обобщения, повышения способностей к выделению главных признаков и более эффективного использования разреженных данных».

Хотя ученые согласны с тем, что построение таких алгоритмов на основе данных, полученных путем изучения мозга, будет самой сложной частью проекта MICrONS (им предстоит определить способ программирования того, как мозг обрабатывает информацию и создает новые связи), некоторые проблемы сложно поддаются решению уже на ранних стадиях работы. Например, в ходе измерения параметров мозга будут получены данные объемом приблизительно два петабайта — что равно емкости памяти 250 ноутбуков или 2,5 миллионов компакт-дисков. Хранить такие объемы данных будет весьма сложно, и для поиска решения этой проблемы IARPA начало совместную работу с компанией Amazon. Более того, все данные представлены в виде изображений. Для поиска информации в этом массиве данных используется процесс, называемый сегментацией, в котором каждому структурному элементу нейронов и их соединениям придается свой цвет — для того, чтобы компьютер лучше понимал общие характеристики и признаки. «Даже если бы работу по раскрашиванию выполняли все люди, живущие на земле, на то, чтобы раскрасить каждый кубический миллиметр изображений понадобилась бы целая жизнь», — говорит Лихтман. Вместо этого для сегментирования графических данных ученые будут работать над созданием более совершенных методик компьютерной обработки изображений.

Лихтман уже добился успеха с обработкой данных объемом в 100 терабайт (двадцатой части от всего массива данных, которые намерены собрать участники проекта MICrONS). Эти данные были получены при исследовании небольшого образца таламуса — области головного мозга, отвечающей за перераспределение информации от органов чувств. Результаты работы возглавляемой им группы ученых будут опубликованы в этом месяце в научном издании по молекулярной и клеточной биологии Cell. «Мы обнаружили, что иногда для соединения с одним и тем же участком разных нервных клеток один и тот же аксон перепрыгивает с клетки на клетку, что указывает на то, что таламус устроен не так, как мы предполагали», — говорит Лахтман. Возможно, то же самое будет обнаружено и в том образце коры головного мозга объемом в один кубический миллиметр, который они только что начали изучать. «Мы знаем, что можем работать и с большими объемами данных, но сейчас мы начинаем изучать то, что можно было бы назвать гигантским объемом, — говорит он. — Это значительный шаг вперед. И мы считаем, что готовы к этому».

Доктор философии, математик и лауреат Филдсовской премии Дэвид Мамфорд (David Mumford), который консультирует группу, возглавляемую Ли, но не входит в число участников программы, отнесся к проекту с энтузиазмом. «Это настоящий прогресс, — говорит он. — Как только данные такого рода будут получены, перед учеными будет поставлена сложная и интересная задача — они должны будут выяснить, что можно сделать, чтобы глубже понять способы взаимодействия нейронов. Я давно мечтал, чтобы когда-нибудь появилась возможность записать такое внушительное количество информации, и считаю, что эти люди вполне могут сделать это».

«Но я с несколько большим скептицизмом отношусь к возможности применить эти данные к искусственным нейронным сетям, — продолжает он. — Это пока еще довольно сложно понять, и это более оторвано от жизни».

Но даже если и так, ученые всех трех групп уверены, что их работа принесет результаты. «То, что из этого получится — неважно, что именно — это уже успех, — считает Лихтман. — Возможно, получится не то, чего вы ожидали, но это шанс. И я не терзаю себя сомнениями о том, ошибочна ли наша идея или нет. Идеи нет. Смысл в том, что мозг на самом деле существует, он очень сложный, и никто до сих пор по-настоящему его не видел, а значит, надо посмотреть. Чем мы рискуем?».

Они надеются на успех и в тех вопросах, в которых возникли проблемы у участников проекта «Мозг человека» с бюджетом 2 миллиарда долларов. Как объясняет Кокс, их подход коренным образом отличается от того, что выбрали участники проекта «Мозг человека» — и в техническом плане и в плане материально-технического обеспечения. Фактически, говоря о характере работы, прежде чем предпринимать попытки моделировать работу мозга, они работают, по сути, в противоположном направлении. И следует надеяться, что работа по реализации проекта MICrONS с привлечением нескольких групп ученых позволит создать обстановку сотрудничества и здоровой конкуренции, необходимых для достижения серьезных результатов. Агентство IARPA планирует публиковать полученные данные исследований, чтобы и другие ученые смогли предлагать свои идеи и свои научные наработки. «И хотя это напоминает рассматривание песчинки, — говорит Ли, — как говорил мой преподаватель в университете, в одной песчинке можно увидеть бога».

Обсуждение
Комментариев: 28
Правила
Эта статья опубликована более, чем 24 часа назад, а значит, она недоступна для комментирования. Новые материалы вы можете найти на главной странице.
SirPеrsival
13 марта 2016, 13:00
Молодцы эмигрировавшие в США ученые! Меня в этом контексте весьма впечатлил фильм Страховщик.
Gote
13 марта 2016, 13:18
SirPеrsival, когда к нам будут эмигрировать и мы деньги в подобные проекты будем вкладывать, вот вопрос?
SirPеrsival
13 марта 2016, 13:27
Gote, думаю, наши в обстановке полной государственной тайны на эти вопросы уже не первую сотню миллионов долларов потратили. ;)
Чтоб я так жил
13 марта 2016, 21:58
Gote, на этих стоит махнуть рукой, порченый товарец. Своих нужно растить. Снова сделать высшее образование бесплатным, брать без ограничений и отсеивать, платить не стипендии, а зарплату за работу в лабораториях, соединять теорию с практикой, пусть бизнес финансирует исследования (тот же Ростех и прочие) и контролирует результаты. Прекратить утечку можно лишь создав благоприятные условия для саморазвития и окупаемости, не исключая упора на патриотизм.
tropikante
13 марта 2016, 13:17
Уот это попил планируется! Уот это размах! Красавчики.
Кр
Консервативный реакционер
14 марта 2016, 00:49
tropikante, а то! Культура-с, вековые ценности либеральной демократии - это вам не хухры-мухры!
BuddHаb
13 марта 2016, 13:45
...определить алгоритмы, которые позволят компьютерам думать как человек... Если каждому нейрону сопоставить микропрограмму, имитирующую в реальном времени его реакцию на внешние сигналы, то получившаяся система из сотни миллиардов таких микропрограмм, по идее, должна начать вести себя как разумный индивид. Для этого, конечно, потребуется компьютер, с гораздо большей вычислительной мощностью, чем имеющиеся сейчас. Но это в теории. А ответа на вопрос, как на практике осуществится идея искусственного интеллекта, ждать осталось недолго.
A
AlfaCentavra1
13 марта 2016, 14:15
BuddHаb: "Если каждому нейрону сопоставить микропрограмму ..." Это уже сделано. Создан искусственный мозг кота на суперкомпьютере, который реагирует так, как и положено коту, только в сотни раз медленнее. Правда, обещали ускорить работу этого "мозга" и возможно, что уже и ускорили (давно этим не интересовался).
A
AlfaCentavra1
13 марта 2016, 14:24
Совсем не обязательно составлять микропрограмму имитирующую нейрон. Есть электронные приборы имитирующие работу нейрона и на их основе даже создаются компьютеры работающие по принципу нейронных сетей.
BuddHаb
13 марта 2016, 14:36
Похоже, основная проблема этого направления в том, что мы до сих пор не имеем точного представления, как функционирует нейронная система. Даже точное число нейронов в голове человека пока не известно. Наверное, прогресс в создании искусственного разума будет в первую очередь зависеть от прогресса в изучении мозга. Сначала надо понять, как работает оригинал, а уж потом учиться его имитировать.
A
AlfaCentavra1
13 марта 2016, 14:55
BuddHаb, Гугл сейчас создаёт системы ИИ для распознавания изображений на основе нейронных сетей и даже добился в этом определённых успехов.
Чтоб я так жил
13 марта 2016, 22:01
BuddHаb, поздновато Вы полезли в компьютеры, до Вас уже многие подумали и придумали. Не буду осмеивать ваши слова, хорошо то, что Вы хотя бы думаете.
W - tmb
13 марта 2016, 14:00
В современных процессорах обращение к массиву данных происходит через уникальный адрес независимый от содержимого памяти (из машинной памяти выбираются инструкции для их дальнейшего исполнения). Мозг человека устроен иначе и состоит из большого числа нейронов, связанных между собой синаптическими связями. Взаимодействуя посредством этих связей, нейроны формируют сложные электрические импульсы, которые контролируют деятельность всего организма. Кора головного мозга содержит множество нейронов, до некоторой степени сопоставимое с числом звезд Млечного пути. Однако положение звезд и других небесных тел обусловлено законами небесной механики. Сходным образом происходит и воздействие нейронов на соседние участки в коре головного мозга. Каждый нейрон связан с определенным количеством других нейронов. Обращает на себя внимание и тот факт, что мозг новорожденного и мозг взрослого человека содержат примерно одинаковое количество нейронов. И только мозг повзрослевшего человека отличается упорядоченностью межнейронных синаптических связей. По-видимому, обучение мозга это процесс изменения архитектуры нейросети, сопровождаемый настройкой синапсов...
с
смс
13 марта 2016, 14:50
я бы в конце вашего коментария поставила вместо слова "синапсов" слово ..."свинопасов" , вот тогда это будет очень точный ответ нацистам,одуревшим от безнаказанности.
W - tmb
13 марта 2016, 15:16
Кому то очень требуется финансирование политически мотивированных зарубежных представительств и частных лиц..?
ш
шаман
13 марта 2016, 15:08
W - tmb, Добрый день. До прочтения вашего комментария,думал примерно о том же. Представил,что удалось создать нечто копирующее мозг человека,но ведь тогда ЭТО нужно воспитать.Дать"прожить"ту или иную"жизнь".Заложить опыт,знания ведь должны в целом опираться на опыт. Возникает гигантское количество-но. ЭТО не сможет ассоциировать себя с человеком поскольку оно не человек. Но тогда форма мышления будет не человеческой.Ведь насколько я понимаю речь не идёт об одном лишь ускорении работы компьютера,Видимо важнейшей задачей является способность,к саморазвитию,что подразумевает определённую свободу мысли-то есть личность? Иной мыслящий вид с потенциалом намного превосходящим человеческий(на данном этапе развития человека в целом) и с совершенно не человеческим восприятием.(попытку обмануть такой интеллект я просто не рассматриваю). Рыть себе яму это вполне в природе нашей.
с
смс
13 марта 2016, 20:14
шаман, там подразумевают тотальный контроль над мозгами...ради этого црушники и тп. спецслужбы... жопу порвут себе. и кто вам сказал, что речь идет о компьютерах? о человеческих мозгах, в которые они пытаются влезть без вазелина и шуровать там по полной. как пить дать нас ждёт всплеск рассказов о "гуманоидах и нло", которыми как правило прикрывали садистские опыты спецслужб и "учёных" над людьми всех полов и возрастов. омерзительны статейка, омерзительны цели которые ставят перед собой так. наз. "ученые" и омерзительны тельнике огромные суммы выдаются нацистам.
b
babayaga11
13 марта 2016, 17:24
W - tmb, СИнопсы, нейроны, связи... Ну прямо рассуждения Аматикайя об Эйве.
A
AlfaCentavra1
13 марта 2016, 14:46
У меня создание искусственного интеллекта (ИИ) вызывает страх. Как я не прикидываю различные варианты развития ситуации с ИИ, в конечном итоге выходит, что человечество должно исчезнуть. Все эти заявления, что ИИ можно поставить под контроль, что бы не навредить человечеству, не выдерживают никакой критики при детальном анализе. Здесь можно привести пример с попытками контроля над распространением ядерного оружия - всё равно идёт распространение. Хотя контролировать ядерное оружие, уверен в этом, куда легче чем это будет с ИИ. Конкуренция между государствами, корпорациями, отдельными людьми, а также разными формами, вариантами и отдельными образцами ИИ выведет ситуацию из под контроля. Да и фактор ошибки никто не отменял, а ошибок, несомненно, будет сделано множество.
aist99
13 марта 2016, 21:20
AlfaCentavra1, Я думаю, что различных открытий, вызывающих обоснованный страх, будет такая масса до создания ИИ, что можно относится к этому спокойно. Фантасты так любят красочно описать катастрофу, вызывая экзистенциальные страхи перед прогрессом. При этом фантастика, как жанр, очень хрупкое направление, подверженное быстрому "старению". Поживём увидим.
ma
medieval alchemist
13 марта 2016, 15:22
Так все же 100 миллиардов или 100 миллионов?
P
Provokator_Gapon
13 марта 2016, 15:26
"Но это в теории. А ответа на вопрос, как на практике осуществится идея искусственного интеллекта, ждать осталось недолго." _________________________________________________________________________________ Недолго, по меркам существования жизни на Земле, 1 - 2 миллиарда лет право не время, по сравнению со временем существования Вселенной, которая как ни крути, но видимо существовала всегда... Так что искусственный интеллект, который можно в принципе создать при помощи инженерных, технологических методов, будет соответствовать человеческому интеллекту не более чем деревяшка Джона Сильвера его настоящей ноге, которую он потерял в том же деле, в котором старый Пью потерял свои иллюминаторы. Так что нечего в этом искусственном интеллекте будет контролировать, так как искусственным то он будет, а вот интеллектом, в человеческом понимании - нет. Средневековые алхимики и то были ближе к цели, когда пытались вырастить в реторте гомункула, эти граждане по крайней мере подходили к решению задачи комплексно, опираясь больше на синтез, чем на анализ.
А
Абода
13 марта 2016, 15:50
Вобще-то, 100 миллионов.
jadefalcon
13 марта 2016, 16:13
В заголовке оригинала - 100 миллионов!
Чтоб я так жил
13 марта 2016, 21:53
А почему ни 100 триллионов, это же для целей разведки, ни хухры-мухры. Если для чего-нибудь полезного людям - не дождёсси. Мозг видите ли изучить хотят, а раньше чем занимались? И какое это отношение имеет к традиционным компьютерным архитектура? Это символические ассоциативные схемы и алгоритмы мажеритирования. Скорее имеет отношение к целочисленной статистике, вероятностям, нечёткой логике. Уже 55 лет этим люди занимаются. А эти только сейчас репу чесать начали. Бабки понадобились (и это в кризис, при таких-то долгах)? Совсем у Пентагона и прочих воинственных проедателях бюджета крыша поехала. Все изобретения зарождалась в грязных гаражах (я не имею ввиду Джобса) и бедных университетских кафедрах. И главное, что цели какие-то мрачные, коньюнктурные (борьба с инакомыслием?).
Чтоб я так жил
13 марта 2016, 22:12
чёртова гуглоклава всё время самом справляет, причём уже когда текст набран. Вот Вам и гугло-интеллект. Не "символические", а СИСТОЛИЧЕСКИЕ структуры, ассоциативные архитектуры (данные управляют данными). Сигналы на выходе зависят от завершенности сигналов соответствующих входов, а также управляют созданием и разрушением связей цепей передачи (динамические программируемые самими данными структуры), отражая работу памяти. Глупо копировать мозг человека, т.к. наше человеческое мышление обусловлено нашим человеческим опытом. Разум (искусственный) пусть делает то, для чего он предназначен. А опасность он не будет представлять для человечества, если само человечество начнёт осознавать, для чего оно живёт. Мы обустраиваем среду обитания и эта среда будет влиять на нас неизбежно, но в симбиозе мы добьёмся большего.
Чтоб я так жил
13 марта 2016, 22:14
Зараза, САМА ИСПРАВЛЯЕТ.
обыватель
14 марта 2016, 18:23
""США: 100 миллиардов на изучение мозга"" Так и не понял - чей мозг собираются изучать американцы? Крыс, мышей, афроамериканцев, или просто американцев? Этих несчастных 100 миллиардов хватит на изучение разве что женского мозга белых американок, типа псаки.
Эта статья опубликована более, чем 24 часа назад, а значит, она недоступна для комментирования. Новые материалы вы можете найти на главной странице.
Рекомендуем